Statistics Final Review Answer Key
For Chapters 7, 8, 9 + 10 by Michael Reiner

1. a)
 \[x = \text{Cakes Sold} \]
 \[y = p(x) \text{ after multiplying each } p(x) \times 100 \]
 \[u = 2 \]

 b)
 \[t = 1 \]

 c)
 \[t^2 = 1^2 = 1 \]

 d)
 \[p(x > 3) = p(x = 4) \]
 \[p(x > 3) = 0.10 \]

 e)
 \[p(x < 2) = p(x = 0) + p(x = 1) \]
 \[0.05 + 0.25 = 0.30 \]

 f)
 \[p(x \geq 1) = p(x = 1) + p(x = 2) + p(x = 3) + p(x = 4) \]
 \[p(x \geq 1) = 1 - p(x = 0) \]
 \[1 - 0.05 = 0.95 \]

 g)
 \[x = 0, 1, 2, 3, 4 \]
 \[y = 2(0) + 5 = 5 \]
 \[0.05 \]
 \[y = 2(1) + 5 = 7 \]
 \[0.25 \]
 \[y = 2(2) + 5 = 9 \]
 \[0.45 \]
 \[y = 2(3) + 5 = 11 \]
 \[0.15 \]
 \[y = 2(4) + 5 = 13 \]
 \[0.10 \]
Statistics Final Review Answer Key
For Chapters 7, 8, 9, 10 by Michael Reimer

1. h) \(x = \text{Cookie's Gold} \)
\(y = P(x) \) after multiplying \(P(x) \times 100 \)
\[\mu = 9 \quad \sigma^2 = 4 \]

i) Expected Value: \(E = 2 \)
\[E(x) + c = 2(2) + 5 \]
\[4 + 5 = 9 \]
Laws of Variance: \(V = 2 \quad x = 0 \quad c = 0 \)
\[V(c) = 0 \]
\[V(x) = 2^2(1) = 4 \]

2. a) \(p = 40\% = 0.40 \quad n = 20 \quad P(x = 3) \)
\[P(x = 3) = \frac{20!}{3!(20-3)!} \times 0.40^3 (1-0.40)^{20-3} \]
\[= 1140 (0.064)(0.6)^{17} \]
\[= 1140 (0.064)(0.000169267) = 0.01234969 \]
\[P(x = 3) = 0.0123 \]

b) \(p = 40\% = 0.40 \quad n = 20 \quad P(x \geq 2) \)
\[P(x \geq 2) = 1 - P(x < 2) = 1 - P(x \leq 1) \]
\[1 - 0.0005 = 0.9995 \]

c) \(p = 40\% = 0.40 \quad n = 20 \quad P(x \leq 4) \)
\[P(x \leq 4) = 0.0510 \]
Statistics Final Review Answer Key
For Chapters 7, 8, 9 + 10 by Michael Reimer

2. d) \[P(X > 4) = P = 40\% = 0.40 \quad n = 20 \]
\[P(X > 4) = 1 - P(X \leq 4) \]
\[= 1 - 0.0510 = 0.9490 \]

e) \[P(X \leq 3) = P = 40\% = 0.40 \quad n = 20 \]
\[P(X \leq 3) = P(X \leq 2) \]
\[P(X \leq 3) = 0.0036 \]

f) Expected value = \[\mu = np \]
\[n = 20 \quad p = 40\% = 0.40 \]
\[\mu = 20 \times 0.40 = 8 \]

g) \[\chi^2 = np(1-p) \]
\[n = 20 \quad p = 40\% = 0.40 \]
\[\chi^2 = 20 \times (0.40)(1-0.40) \]
\[\chi^2 = 4.8 \]

h) \[\Gamma = \sqrt{\chi^2} \]
\[\Gamma = \sqrt{4.8} \]
\[\Gamma = 2.19 \]

3. \[\mu = 0.8/\text{chapter} \]
\[P(X = 2) \text{ in two chapters} \]
\[\therefore \quad \mu = 0.8 \times 2 = 1.6 \]
\[e^{-\mu} \frac{(\mu)^x}{x!} \cdot e^{-1.6} \frac{(1.6)^2}{2} = 0.201896518 \times 2.58 = 0.2584 \]
Statistics Final Review Answer Key
For Chapters 7, 8, 9 + 10 by Michael Reimer

4. a) \(Z = \frac{X - \mu}{\sigma} = \frac{840 - 800}{45} \)
 \[Z = \frac{840 - 800}{45} = 2.22 \]
 \[Z \approx 0.968 \]
 \[0.968 - 0.8133 = 0.1747 \]

b) \(X = ? \)
 \[Z = \frac{X - \mu}{\sigma} = \frac{840 - 800}{45} \]
 \[Z = \frac{X - 800}{45} \]
 \[1 - 0.05 = 0.95 \]
 \[0.95 = \frac{X - 800}{45} \]
 \[0.95 \times 45 = X - 800 \]
 \[42.75 = X - 800 \]
 \[X = 842.75 \]

4c) \(X = ? \)
 \[Z = \frac{X - \mu}{\sigma} = \frac{X - 800}{45} \]
 \[Z = \frac{X - 800}{45} \]
 \[1.28 = \frac{X - 800}{45} \]
 \[1.28 \times 45 = X - 800 \]
 \[57.60 = X - 800 \]
 \[X = 857.60 \]
5. a)
\[\mu = \$800 \quad \sigma = \$125 \quad n = 40 \]
\[\overline{X} = \frac{\sum X}{n} = \frac{125}{40} = 3.125 \quad \text{[Corrected]} \]
\[\overline{X} = \frac{125}{40} = 3.125 \]
\[\text{SE} = \frac{125}{\sqrt{40}} = 19.764 \]
\[z = \frac{3.125 - 19.764}{125.55532} = -0.002 \]

b)
\[X < 2750 \quad \mu = \$800 \quad \sigma = \$125 \quad n = 40 \]
\[z = \frac{2750 - 800}{125} = 7.5 \]
\[\frac{125}{\sqrt{40}} = 19.764 \]
\[z = \frac{7.5 - 19.764}{125.55532} = -0.002 \]

6.
\[p = 0.38 \quad n = 650 \quad \bar{p} = 0.42 \]
\[\frac{0.38 \times 650}{650} = 247 > 5 \]
\[(1 - 0.38) \times 650 = 413 > 5 \]
\[\bar{p} = \frac{0.42}{n} = 0.0063 \]
\[z = \frac{0.42 - 0.38}{\sqrt{0.38(1 - 0.38)} / \sqrt{650}} = \frac{0.42 - 0.38}{0.04} = 0.42 \]
\[0.38 \]
\[z = \frac{1 - 0.38}{0.019038423} = 0.9821 \]
\[z = 0.04 \]

7.
Regular: \[n_1 = 55 \quad n_2 = 40 \]
\[\overline{X}_1 = 5.5 \quad \overline{X}_2 = 4.8 \]
\[Z = \frac{5.5 - 4.8}{\sqrt{\frac{55}{50} + \frac{4.8^2}{40}}} = \frac{0.7}{0.3} = 3 \]

Detailed: \[n_1 = 50 \]
\[\overline{X}_1 = 5.5 \quad \overline{X}_2 = 4.8 \]
\[Z = \frac{(X_1 - X_2) - (5.5 - 5.8)}{\sqrt{\frac{112}{50} + \frac{144}{40}}} = \frac{0.3}{0.3} = 1 \]
\[z = \frac{1.1}{0.0831} = 1.31 = 0.8665 \]
Statistics Final Review Answer Key
For Chapters 7, 8, 9, 10 by Michael Reimer

8. \(\bar{x} = 2.3 \quad n = 8 \quad CI = 98\% \quad \bar{x} = 23.1625 \)
\[1 - 0.98 = 0.02 = 0.0100 \]
\[\frac{0.0100}{2} = 0.0050 \]
\[\bar{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}} = 23.1625 \pm 2.33 \left(\frac{2.3}{\sqrt{8}} \right) \]
\[23.1625 \pm 2.33 \times 0.81317 = 23.1625 \pm 1.8947 \]
\[LI = 23.1625 - 1.8947 = 21.2678 \]
\[UL = 23.1625 + 1.8947 = 25.0572 \]

9. \(\sigma = 6 \quad p = 0.75 \quad CI = 90\% \quad z = 1.645 \quad n = \frac{(z)^2}{\hat{p}(1-\hat{p})} \)
\[n = \left(\frac{1.645 \times 6}{0.75} \right)^2 = \frac{(1.645)^2}{(0.75)(0.25)} = (13.16)^2 = 173.18 \approx 174 \]