Statistics (Chapter 10: Introduction to Estimation)

Answer Key by Michael Reimer

1) "Normally Distributed" \(z = 0.32 \) \(CI = \frac{90}{100} = 0.90 \)

Four Commonly Used Confidence Levels = 2

- \(90\% = 1.645 \)
- \(95\% = 1.96 \)
- \(98\% = 2.33 \)
- \(99\% = 2.575 \)

To Find \(z \) using Tables B-8

\(1 - CI = 0.0500 \) look up on \(z \) chart

\(1 - 0.90 = 0.10 = 0.0500 \) look up on \(z \) table

\(\frac{0.0500}{2} = 0.0250 \)

\(z = 1.64 \) \(2 = -1.65 \) Now we average the 2 \(z \) scores

\(\frac{-1.64 + (-1.65)}{2} = -1.645 \)

Now solve for \(\bar{X} \):

\[\bar{X} = \frac{4.55 + 6.95 + 15.25 + 9.95 + 5.95 + 4.95 + 6.75 + 4.85 + 5.65 + 8.95}{10} = 6.38 \]

Now plug into CI Formula

\[\bar{X} \pm \frac{z}{\sqrt{N}} = 6.38 \pm 0.32 \]

\[6.38 \pm 1.645(0.10119.2885) = 6.38 \pm 0.17 \]

\[6.38 - 0.17 = 6.21 \]

\[6.38 + 0.17 = 6.55 \]

we are 90% confidence that the average value of all greeting cards is between $6.21 and $6.55
2) "How large a sample" - Finding "n"

Also: \(\alpha \), confidence level and \(\beta \) are known.

\(\alpha = 0.05 \), \(1 - \alpha = 95\% \), \(\beta = 0.20 \)

\(\beta = \text{Bound on the error of estimation} \)

To find \(z = 1 - 0.95 = 0.05 = 0.0250 \) look up on \(z \) table

\[0.0250 = 1.96 \]

\[n = \left(\frac{z + \sqrt{z}}{\frac{2}{\beta}} \right)^2 = \left(\frac{1.96 \times 100}{20} \right)^2 = \left(\frac{196}{20} \right)^2 = (9.8)^2 = 96.04 \]

\[n = 97 \]