Example 1:

Find the equation of the line tangent to \(y = 4 - x^2 \) at \(x = 1 \)

NOTE: When we find the first derivative of an equation, we have solved the slope at every point.

Steps to finding the equation of a tangent or normal line:

1. Find the first derivative of the function. The first derivative is the slope at every point.
2. Plug \(x \) into the first derivative to find the slope at that particular \(x \) value.
3. Solve for \(y \) using the original function.
4. Use \(m = \frac{y - y_1}{x - x_1} \) to solve for the equation.

Step by step instruction:

1. Find the derivative of \(y = 4 - x^2 \). \(\Rightarrow \frac{dy}{dx} = -2x \).

 \(-2x\) is the slope of the function at every point.

 Find the slope by plugging \(x = 1 \) into the derivative.

 \[
 \frac{dy}{dx}|_{x=1} = -2(1) = -2 = \text{slope (m)}
 \]

2. Next, using \(x = 1 \), solve for \(y \). \(y = 4 - x^2 \) \(\Rightarrow \) \(y = 4 - (1) = 3 = y \)

 Using \(m = \frac{y - y_1}{x - x_1} \), plug in \(m, x, \) and \(y \) to solve the equation.

 \[
 m = \frac{y - y_1}{x - x_1} = \Rightarrow m = \frac{y - y_1}{x - x_1} \Rightarrow -2 = \frac{y - 3}{x - 1}
 \]

 \(-2(x - 1) = y - 3 \) \(\Rightarrow \) \(-2x + 2 = y - 3 \) \(\Rightarrow \) \(y = -2x + 5 \) (in slope-intercept form)

 Therefore, \(y = -2x + 5 \) is the equation of the tangent line at \(x = 1 \).
Find the equations for the tangent lines at the point indicated (in general form).

1. \(y = 3x^2 - 2x + 1 \) at \(x = 1 \)

2. \(y = x^3 - 7x + 4 \) at \(x = -1 \)

3. \(x^2 + y^2 = 36 \) at \((3, 3\sqrt{3}) \)

4. \(y = \frac{3}{(x^2 - 1)^2} \) at \(\left(2, \frac{1}{3}\right) \)

5. \(y^2 = 50x - 1 \) for \((1, 7) \)

6. \(3x - x^2 + 2y = 7 \) at \(x = -2 \)

ANSWERS:

1) \(4x - y - 2 = 0 \)
2) \(4x + y + 14 = 0 \)
3) \(x + \sqrt{3}y - 12 = 0 \)
4) \(8x + 9y - 19 = 0 \)
5) \(25x - 7y + 24 = 0 \)
6) \(7x + 2y - 3 = 0 \)